1. 參與客戶會議,對應客戶指示與需求。 2. 參與客戶散熱設計開發過程。 3. 熱分析與模擬,使用CFD進行熱流模擬。 4. 測試與驗證,失效分析與報告產出。
1.策略規劃:公司營運策略/營運風險預估,損益經營分析 2.資源管理:資源整合管理,投資評估及運用效率/成本控制 /差異分析與改進 3. 產業分析/技術分析/客戶分析
1.RFI/RFQ/NPI/MP整體技術專案進度管理 2.客戶溝通及專案進度報告 3.物料追蹤及廠商進度管理 4.內部團隊溝通協調
Product- Broadband Responsibilities: 1.Responsible for defining the overall marketing strategy and driving the execution of our marketing-campaigns. 2.As a Marketing Manager, you will be the strategic architect of our marketing efforts, tasked with envisioning and shaping the entire promotional landscape for our broadband products. (promotional videos, social media, website, tradeshows, white papers, roadshows,....) Requirement: - Bachelor or Master degree in marketing or equivalent - Proven successful track record in market research is a must - Experience with Fiber, Wi-Fi, Docsis, 5G,… technologies is a strong plus - Excellent communication and presentation skills (English) - Positive attitude, resilience, out-of-box thinking, ability to work with / guide a multidisciplinary team are strong plusses Additional information for the job: Job Location: Tucheng Site,Hsinchu Site 1. Build up a deep understanding of market needs, technology trends and our products. Use that know-how in combination with vision/creativity to create our promotional activities. 2. Evangelize our solutions to customers and partners. 3. Partnering with engineering teams and various stakeholders to oversee the development and execution of strategic marketing plans. 4. Conducting regular meetings with company leadership to report on the status of all marketing activities and their performance in relation to overall company goals.
1. NB產線產測程式開發 2. 工廠自動化軟體開發設計 3. 自動化流程設計
1.負責 Windows 作業系統的 Preload 影像建立,並進行測試以確保其穩定性和相容性。 2.與專案團隊溝通,理解新產品的規格和需求,並依此設定 Preload 影像。 3.管理和更新 Preload 影像庫,確保其與最新的硬體和軟體版本相容。 4.撰寫和維護 Preload 的相關文檔和操作手冊,以及除錯和處理Preload相關工廠或是流程問題。
1.新產品專案韌體開發以及除錯 2.與專案團隊溝通,理解新產品的規格和跨單位溝通 3.協助解決工廠問題 4.Application開發
1. 品質系統建立與維護 2. 產品品質確保及改善 3. 客戶端品質問題之對策與處理 4. 客戶稽核對應 5. PCB越南建廠 , 負責品質管理與系統維護
1.系統散熱設計及驗證 2.系統噪音評估/設計及驗證 3.系統散熱模擬 4.散熱模組及風扇規格定義及承認 5.創新設計及新技術導入
1.系統設計開發人員 2.系統開發可行性評估、系統DFX檢查、系統排線繞線定義、定制系統需求規格書 3.精通英文、溝通協調能力
1. DT/ WKS硬體電路設計,使用CAD軟體開發電路圖。 2. 進行硬體原型測試,執行功率和性能基準測試,優化設計。 3. 從設計分析確認Design Quality,處理設計相關的問題,確保產品品質。 4. 診斷硬體故障,提供技術支援。 5. 新技術研究開發與導入
1. 結構強度模擬分析-DT/WS 2. 偕同不同function team合作進行驗證、分析與解決問題 3. 模擬新技術導入與研究 4. 模擬工具二次開發
1. 熱流模擬分析-DT/WS 2. 熱傳溫度測試-協助RD除錯-台灣 3. 跨部門function team合作進行驗證、分析與解決問題 4. 模擬新技術導入與研究 5. 模擬工具二次開發
主要負責: 路由器/交換機/服務器 1.NPI 產品生產過程中不良分析,找出產品設計bug,提供客戶改善建議。 2.量產異常分析,並協助CFT改善生產良率。 3.RMA/RCFA/ORT不良品失效分析,及時反饋產品問題並改善。 4.MRB不良物料失效分析,協助廠商分析推動零件良率改善。 5.3-Strike、疑難板及專案處理及分析。 6.產品技術資料整理及編寫 職務需求: 1. 電機電子、通訊工程相關科系專業 2. 2年以上失效分析相關經驗 ,熟悉半導體、電子元器件、電子電路領域的失效分析流程由家 3. 具備系統性思維,能通過實驗數據推導失效機理,熟悉FTA(故障樹分析)、8D、5Why等分析工具。 4. 熟悉路由器、交換機、伺服器等網路產品生產、測試及分析流程。 5. 熟練使用萬用表、示波器、頻譜分析儀等常用測量儀器測量相關電路及元件信號。
1. 主導企業級藍圖規劃與策略制定 2. 建立及維運架構治理與審核機制 3. 推動共性平台與技術資產建設 4. 引導企業技術發展與前瞻佈局 5. 培養組織架構人才與技術文化
1. 設計端對端解決方案與技術選型 2. 確保方案遵循企業標準與整合性 3. 主導關鍵技術驗證與風險評估 4. 提供專案開發的架構指導與支援 5. 沉澱專案經驗與促進技術交流
<About the Job> We are looking for a highly motivated and skilled AI Infrastructure Engineer with strong hands-on experience in Kubernetes (K8s), particularly in supporting AI/ML workflows. In this role, you will be instrumental in designing, implementing, and maintaining robust, scalable, and high-performance Kubernetes-based infrastructure that supports the entire lifecycle of our AI applications—from data processing and model training to deployment and monitoring. You will work closely with data scientists, AI/ML engineers, and DevOps teams to ensure seamless integration of AI/ML workloads within cloud-native environments. The ideal candidate has a deep understanding of container orchestration, distributed systems, and MLOps practices, and is passionate about building efficient, reliable platforms that enable rapid AI innovation. This is a unique opportunity to work at the intersection of AI and cloud infrastructure, contributing to next-generation systems that power intelligent applications at scale. <Job Responsibilities> .Design & Architecture: Design, build, and scale a reliable and efficient Kubernetes platform optimized for AI/ML workloads. This includes provisioning GPUs, managing resources, and ensuring optimal performance for computationally intensive tasks. .Infrastructure Management: Manage the entire Kubernetes cluster lifecycle—from provisioning and configuration to ongoing maintenance, monitoring, and troubleshooting, ensuring high availability and scalability. .Deployment & Automation: Develop and implement CI/CD pipelines to automate the deployment, scaling, and updating of machine learning models and AI services. Ensure seamless integration with AI tools like Kubeflow, MLflow, and Argo Workflows. .Performance Optimization: Continuously monitor and optimize system performance, focusing on resource utilization, latency reduction, and improving the overall efficiency of AI workloads. Ensure high availability and minimal downtime for AI services. .Collaboration & Guidance: Work closely with data scientists, ML engineers, and cross-functional teams to understand their infrastructure requirements and provide technical solutions to meet workload demands effectively. .Security & Compliance: Implement best practices for cluster security, including network policies, access controls, and vulnerability management to safeguard sensitive data and maintain compliance. .Cost & Resource Efficiency: Manage resources effectively to optimize cost while maintaining high-performance infrastructure for AI model training, inference, and data processing. <Skills & Qualifications> .Kubernetes Expertise: You should have hands-on experience with Kubernetes (K8s) architecture, including deploying applications, managing resources, and troubleshooting complex cluster issues in a production environment. .Containerization & Linux Environment: Strong knowledge of container technologies such as Docker, along with hands-on experience in Linux environments. Expertise in container orchestration and deployment practices is highly valued. .AI Workloads: Deep understanding of GPU scheduling and performance optimization, including strategies for resource allocation, workload balancing, and maximizing throughput for AI/ML tasks. .Automation & CI/CD: You need practical experience with building and managing CI/CD pipelines using tools like GitLab CI, Jenkins, GitHub Actions, or ArgoCD to automate deployments. .Programming & Scripting: Proficiency in at least one scripting language (e.g., Python, Bash) is a must. .Networking: Knowledge of container networking and service mesh technologies (e.g., Istio, Linkerd) is highly desirable and a great advantage.
1. 對於AI高階水冷工作站系統架構設計/接口定義感興趣 2. 負責物料開發及管理,確保開發流程順利 3. 制定系統測試與驗證計畫,追蹤及解決 issue 4. 跨部門協作與製程整合,處理 NPI 及量產階段的系統問題 5. 良好溝通能力與具客戶協作經驗
1. AI PC MCU韌體(Embedded Controller)/FreeRTOS 程式開發、更新、維護 2. AI PC MCU韌體(Embedded Controller)/FreeRTOS 研發時程及可行性評估 3. AI PC MCU韌體(Embedded Controller)/FreeRTOS 規格的review與分析 4. 專案執行與相關功能團隊合作 5. 良好的溝通協調能力 6. 具備產品分析與問題解決能力 7. 對工作具備熱誠 8. 具備邏輯思考能力與抗壓性
1. 指導並執行客戶端設備安裝、架設與維護 2. 負責現場需求溝通,協調並解決技術問題 3. 協助FAE團隊建置,並負責海外專案人力調配